Refine your search:     
Report No.
 - 
Search Results: Records 1-3 displayed on this page of 3
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Study on chemical interaction between UO$$_{2}$$ and Zr at precisely controlled high temperatures

Shirasu, Noriko; Sato, Takumi; Suzuki, Akihiro*; Nagae, Yuji; Kurata, Masaki

Journal of Nuclear Science and Technology, 60(6), p.697 - 714, 2023/06

 Times Cited Count:1 Percentile:72.91(Nuclear Science & Technology)

Interaction tests between UO$$_{2}$$ and Zr were performed at precisely controlled high temperatures between 1840 and 2000 $$^{circ}$$C to understand the interaction mechanism in detail. A Zr rod was inserted in a UO$$_{2}$$ crucible and then heat-treated at a fixed temperature in Ar-gas flow for 10 min. After heating in the range of 1890 to 1930 $$^{circ}$$C, the Zr rod was deformed to a round shape, in which the post-analysis detected the significant diffusion of U into the Zr region and the formation of a dominant $$alpha$$-Zr(O) matrix and a small amount of U-Zr-O precipitates. The abrupt progress of liquefaction was observed in the sample heated at around 1940 $$^{circ}$$C or higher. The higher oxygen concentration in the $$alpha$$-Zr(O) matrix suppressed the liquefaction progress, due to the variation in the equilibrium state. The U-Zr-O melt formation progressed by the selective dissolution of Zr from the matrix, and the selective diffusion of U could occur via the U-Zr-O melt.

Journal Articles

High-temperature interaction between zirconium and UO$$_2$$

Shirasu, Noriko; Suzuki, Akihiro*; Nagae, Yuji; Kurata, Masaki

Proceedings of International Topical Workshop on Fukushima Decommissioning Research (FDR 2019) (Internet), 4 Pages, 2019/05

High temperature interaction tests between UO$$_{2}$$ and Zr were performed at around 2173 K, to make clear the UO$$_{2}$$/ $$alpha$$-Zr(O) interaction and the mechanism of degradation, for developing the improved models for advanced severe accident analysis codes. A Zr plate was inserted in a UO$$_{2}$$ crucible, and heat treated at 2173 K in stream of Ar. After the heat-treatment, the samples were subjected to surface microanalysis. The middle region of Zr sample shows streak-like structures which are extended towered the top. It is confirmed that the streak-like structures were mainly consist of U from the EDX results, and the structures revealed that the U-rich phase was liquid during the heat-treatment. It seems that the U-rich liquid grew selectively toward the area where the oxygen concentration was low.

Oral presentation

Advanced multi-scale modeling and experimental tests on fuel degradation in severe accident conditions, 2-4; High temperature interaction between UO$$_{2}$$ and Zr

Shirasu, Noriko; Suzuki, Akihiro*; Nagae, Yuji; Kurata, Masaki

no journal, , 

The high temperature interaction tests between UO$$_{2}$$ and Zr were performed at around 2173 K in stream of Ar, to make clear the UO$$_{2}$$ and Zircaloy cladding interaction and the mechanism of degradation. After the heat-treatment, the samples were subjected to surface microanalysis. The mechanism of fuel degradation was more clarified.

3 (Records 1-3 displayed on this page)
  • 1